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The evolution of the coastal upwelling and interfacial instability of a stratified and 
rotating fluid is studied numerically by using large-eddy simulation. Upwelling is 
generated near the sidewall of a rotating annulus by the shear at the top. The fluid 
initially consists of a stably stratified ‘ two-layer’ structure with a narrow interface 
separating the two layers. The large-scale motion of the flow is simulated by solving the 
time-dependent non-hydrostatic incompressible Navier-Stokes and scalar transport 
equations while the small-scale motion is represented by a dynamic subgrid-scale 
model. The upwelling process contains both stable and unstable stratification. The 
vertical structure of upwelling consists of a persistent primary front, a trailing mixing 
zone on the shore side of the front, and a temporary secondary front which leads a top 
inversion layer. The longshore velocity profile has two maxima which occur at the edge 
of the sidewall boundary layer and at the density front. The upwelled density front is 
unstable to azimuthal perturbations and baroclinic waves develop and grow to large 
amplitude. Pairs of cyclonic and anticyclonic waves appear at the front which form 
‘jet-streams’. The secondary front is unstable to azimuthal perturbations. Its 
instability, and the associated drop of the top inversion layer, take the form of radial 
bands which subsequently break up into isolated patches and eventually sink. The 
computed values of various upwelling time and length scales are compared to and are 
in good agreement with past experimental data. 

1. Introduction 
Coastal upwelling is a geophysical phenomenon which occurs mostly from spring to 

summer near the eastern boundary of the oceans. The direction of the coastal wind in 
this time period is predominantly equatorward. As the surface water moves with the 
wind, it is driven in the offshore direction by the Coriolis force due to the Earth’s 
rotation (figure 1) which results in offshore Ekman transport. The result is that return 
flow under the surface layer is lifted upward near the coast. When the coastal wind is 
strong enough, the seasonal thermocline is elevated and intersects with the ocean 
surface to form a surface density front and an anomaly of cold water along the coast. 

Coastal upwelling has significant effects on the weather, fish supply, ecology, and 
transport of nutrient and pollutant materials near the coast (Ryther 1969; 
Roughgarden, Gines & Possingham 1988). A large amount of increasingly soph- 
isticated data on coastal upwelling has been compiled from field observations (e.g. 
Smith, Mooers & Enfield 1971 ; Mooers, Collins & Smith 1976; Halpern 1976; Ikeda, 
Mysak & Emery 1984; Mooers & Robinson 1984; Huyer, Smith & Paluszkiewicz 1987; 
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FIGURE I. Schematic of coastal upwelling. 
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FIGURE I. Schematic of coastal upwelling. 

Petrie, Topliss &Wright 1987; Rienecker & Mooers 1987; Colin 1988). Among these, 
Rienecker & Mooers (1987) coupled their observations with an open-ocean quasi- 
geostrophic model to show that the model could provide useful dynamical interpolation 
between observation periods, yielding a time series of the evolution of features in a 
subdomain of the California current system. A survey of the coastal as well as open- 
sea upwelling research prior to 1967 can be found in Smith (1968). The main features 
of coastal upwelling include the following. 

(i) The longshore flow in the surface layer which is in the direction of the wind has 
a jet-like structure and is largely in geostrophic balance. 

(ii) There is a net offshore transport of water in the surface Ekman layer. The cross- 
stream circulation consists of two counterclockwisely rotating cells (when viewed 
against the wind direction). The dividing line of these two cells roughly corresponds to 
that which divides the surface layer from the opposing longshore undercurrent. 

(iii) The frontal layer which intersects the surface remains largely stationary, even 
though the wind continues to be favourable to upwelling. 

(iv) Both the horizontal and the vertical velocity gradients are high across the 
frontal layer. The frontal layer is also an internal turbulent shear layer where intensive 
mixing takes place. 

(v) Waves, meanders and pinched-off eddies have been observed near the ocean 
surface front in the form of jets and cyclone/anticyclone pairs. 

Laboratory experiments have been conducted to study coastal upwelling flow (e.g. 
Narimousa & Maxworthy 1985, 1987; Monismith 1986). Frontal waves and eddies 
have been observed in the laboratory experiments by many investigators (Hide 1971 ; 
Hart 1980; Linden & van Heijst 1984; Griffiths & Linden 1981, 1982; Narimousa & 
Maxworthy 1985, 1987). The experiments of Narimousa & Maxworthy will be given 
special attention because of the close resemblance of the geometry and flow conditions 
of our simulations to their experiments. Narimousa & Maxworthy conducted a series 
of laboratory experiments in which they set up a two-layer stratified system in a 
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rotating conical cylinder. The top disk was rotated opposite to the system rotation to 
simulate an upwelling-favourable surface wind stress. As a result, the density interface 
was elevated near the outer wall, and when the surface stress was strong enough, the 
interface intersected the surface and formed a front which continued to migrate 
offshore. The front was unstable under certain conditions and azimuthal waves 
appeared and grew to large amplitude. Using flow visualization, Narimousa & 
Maxworthy (1987, hereafter referred to as NM87) observed structures such as plumes, 
jets and pinched-off cyclones near the front. 

Many models, analytical as well as numerical, have been proposed to describe 
certain aspects of coastal upwelling. Steady-state and homogeneous models were 
developed by, notably, Ekman (1905), Sverdrup (1938), Hidaka (1954) and Garvine 
(1971). The effect of stratification is considered either by the continuous approach or 
by the layered approach. Continuously stratified models were studied, for example, by 
Hsueh & Kenney (1972), Allen (1972a, b, 1973) and Pedlosky (1974). Two-layer 
stratified models were investigated analytically by Charney (1955) and Yoshida (1 955, 
1967). Yoshida (1955) considered the transient phases of coastal upwelling. His model 
has no variations in the longshore direction. For the upper layer, it assumes a 
geostrophic balance in the cross-shore direction and a balance among the transient 
advection, the Coriolis force and the surface wind stress in the longshore direction. An 
important result derived from this model is the surfacing time scale, tf,. of the interface 
which is 

where p is the fluid density, T, is the surface stress, B! is the Rossby radius of 
deformation for the two-layer system defined as 

H = h,, + h,, is the total depth of the water, h,, and h,, are, respectively, the initial 
depths of the upper and lower layers, f is the Coriolis parameter which is twice the 
angular velocity Q of the Earth, and g’ = g A p / p  is the reduced gravity. The 
deformation radius .% is the intrinsic horizontal length scale in a rotating two-layer 
system. Yoshida later cxtended this model to a two-layer quasi-steady-state model 
(Yoshida 1967). 

Numerical models based on the layered approach were developed by O’Brien & 
Hurlburt (1972) and Hurlburt & Thompson (1973), were later extended to three 
dimensions by Peffley & O’Brien (1976) and were applied to study the effect of bottom 
topography by Preller & O’Brien (1980). The major advantage of a numerical model 
compared to the analytical models is its capability of dealing with nonlinearity and the 
complex geometry of the coast and the shelf. However, the continuous stratified model 
of Allen (1973) was restricted to laminar axisymmetric flow cases. On the other hand, 
until recently the main deficiency of the layered models is that they cannot be used to 
study the evolution of a surface front and associated cross-front turbulent mixing. 
Pelegri & Richman (1993) have presented a two-dimensional two-layer model for wind- 
driven transient coastal upwelling which allows mass and heat turbulent transfer 
between both layers. 

More advanced primitive equation (hydrostatic pressure variation is assumed) codes 
are also being used now to study upwelling and related flows. Haidvogel, Beckman & 
Hedstrom (1991) and Song & Haidvogel (1994) provide excellent examples and show 
the value of fully threc-dimensional simulations that can cover the flow region of 
interest. While Haidvogel et al. (1991) note that all of the important effects had not yet 
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been included in their model (e.g. wind stress), the model of Song & Haidvogel (1994) 
includes all of the key effects (e.g. variable topography, wind stress, free surface, 
turbulence, etc.). 

The present work attempts a new approach to study coastal upwelling by using 
large-eddy simulation (LES). In LES, the grid-filtered time-dependent non-hydrostatic 
incompressible Navier-Stokes and scalar transport equations are solved and the small- 
scale motion is represented with a dynamic subgrid-scale model. By tracking the 
temporal evolution and resolving the spatial structure of the upwelling flow and the 
surface density front, we are able to ‘see’ various stages of the whole upwelling process 
and the interfacial instability from different angles. The main advantage of this 
approach over a hydrostatic model is that it includes all the dynamics in the simulation. 
The LES approach with dynamic subgrid-scale modelling allows accurate and robust 
representation of the small-scale motions by the resolved field which includes the effect 
of rotation and stratification. The disadvantage of LES is that it requires a large 
amount of computing resource as we can see in $4. In the present work, we intend to 
examine the efficacy of LES in the study of stratified and rotating flows in geometrically 
complex domains by comparing the simulation data with previous experimental and 
theoretical results and to provide new insight into the coastal upwelling process and 
interfacial instability. 

This paper is organized as follows. In $2, the governing equations and the numerical 
methods are briefly described. Section 3 defines the computed upwelling flows which 
include the geometrical, physical and numerical parameters. A scaling analysis of the 
important length and time scales of the flow is carried out in 94. Section 5 contains the 
simulation results. Conclusions are given in 86. 

2. Governing equations and numerical methods 
The governing equations are the grid-filtered time-dependent three-dimensional 

incompressible Navier-Stokes, continuity, and scalar transport equations under the 
Boussinesq approximation. They are 

where 

An overbar denotes that the corresponding quantity is grid filtered. In the above 
equations, xi(i  = 1,2,3) denote the Cartesian coordinates in which x1 and x, are the 
horizontal coordinates and x3 is the vertical coordinatc, t is time, Ui(i(i = 1,2,3) 
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represent velocity components, p* is the relative density deviation from a reference 
state, pb denotes the relative background density, pis  the reduced dynamic pressure, S, 
is the Kronecker delta, u is the kinematic viscosity, g denotes the gravitational 
acceleration, 52 is the angular velocity of the system, and K denotes the thermal or 
molecular diffusivity. 

The quantities rij and xj in (6) and (8) are defined as 
- 

rii = ui uj - iid iij, 
x. 3 = u. 3P*-U5P*, 

and represent, respectively, the subgrid-scale stress and the subgrid-scale scalar flux. 
These two subgrid-scale quantities are modelled using the grid-filtered quantities with 
the dynamic subgrid-scale eddy viscosity model (German0 et al. 1991 ; Zang, Street & 
Koseff 1993 u). In an eddy viscosity model, the subgrid-scale stress is modelled by an 
eddy viscosity which has a model coefficient (Smagorinsky 1963). Instead of having a 
prescribed model coefficient, the dynamic subgrid-scale eddy viscosity model is able to 
calculate the model coefficient using the resolved variables by filtering the governing 
equation at two different spatial scales. As a result, effects such as rotation, 
stratification and geometry on the unresolved subgrid-scale motion may be represented 
dynamically. In the present implementation, a local averaging together with a cutoff 
are used to stabilize the calculation. The readers are referred to Zang (1993) and Zang, 
Street & Koseff (1993 a, b) for details of the derivation of the governing equations and 
the subgrid-scale models. 

The governing equations are transformed into a non-orthogonal curvilinear 
coordinate system and discretized using a finite-volume approach in the computational 
domain. The non-staggered fractional-step method of Zang, Street & Koseff (1994) is 
employed to advance the equations in time. The present non-staggered method allows 
us to store only one set of metric quantities per control volume and as a result 
significantly reduces the memory requirement of the code. The pressure Poisson 
equation which is solved using an efficient multigrid method is formulated in the same 
manner as on a staggered grid so that the mass conservation can be satisfied to machine 
accuracy. The overall accuracy of the numerical method is second order in both space 
and time. 

(9) 
(10) 

- _ _  

3. Problem definition 
A schematic of the flow domain, the boundary conditions, and an illustration of the 

upwelled density interface and surface front are shown in figure 2. The geometries used 
in the present simulations are similar to those of NM87 except that, instead of a 
cylinder, a section of an annulus is employed, an approximation which will be justified 
in 95. In some cases, a flat bottom instead of a sloping bottom is used. In total, six cases 
are considered in the present work. A summary of the geometric parameters and the 
grid resolution is given in table 1. In naming the cases, ‘FB’ and ‘SB’ represent, 
respectively, a flat bottom and a sloping bottom; axisymmetric cases are denoted by 
‘2D’, and three-dimensional cases are denoted by ‘3D’. In all cases, the outer radius 
R, is 0.45 m, and the inner radius R, is 0.1 R,, which gives a horizontal length scale of 
the annulus L, = R, - R, = 0.405 m. The span of the section of the annulus is defined 
by its included angle 8,. The quantities H and h represent, respectively, the maximum 
and minimum depths of the section of the annulus (see figure 2). The grid points shown 
in table 1 are interior points. Two fictitious points outside the physical domain are 
added in each dimension in the calculations to facilitate implementing boundary 
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FIGURE 2. Schematic of the flow domain and the density interface. 

Arrntn Azmtn  
- Time step - Grid resolution -~ - 

Case O,(rad) H(m)  h(m) ( N , x N , , x N , )  L R  H At (s) 

FB2Dl N/A 0.2 0.2 128 x 1 x96 2 x 10-3 1.5 x 10-3 5 x 10-2 
FB2D2 N/A 0.2 0.2 128 x 1 x 96 1 x 10-3 5 x 10-4 s x 10-2 
FB3D 2n/3 0.2 0.2 64 x 48 x 64 4 10-3 4 x 1 0 - 3  2.5 x 10-2 

SB3Dl n/2 0.15 0.033 64 x 64 x 64 4 x 10-3 4 x 10-3 2 x 10-2 
SB3D2 n/2 0.15 0.033 64 x 64 x 64 3 10-3 3 x 10-3 2 x 10-2 
SB3D3 ~ / 2  0.15 0.033 80 x 80 x 80 2 x 10-3 2 x 10-3 1.5 x 

TABLE I .  The geometry and grid resolution for the simulation of upwelling flows in a section of 
an annulus with a sloping or a flat bottom. 

conditions. The grid is non-uniform in the radial and vertical directions but uniform 
in the azimuthal direction. Grid points are clustered in the vicinity of solid walls. 
Geometric stretching is employed in the directions where grid distribution is non- 
uniform. 

The governing equations are solved in the reference frame rotating with the 
container. The initial condition is that of a ' two-layer' stratified fluid with fresh water 
on top of salty water in solid-body rotation with the container. The initial density field, 
which approximates a two-layer stratified fluid, is taken to be horizontally uniform. 
Because we have invoked the Boussinesq approximation, the centrifugal force in the 
two layers is the same at the same radial locations. As a result, the density interface is 
flat under the static condition in the rotating reference frame. The vertical density 
profile is approximated by a hyperbolic tangent function. Since there was no 
information available on the thickness of the interface in the experiments, it was chosen 
to be as small as possible and yet large enough to be resolved by the computational 
grid. The number of grid points within the interface typically ranges from five to ten. 

At time t = 0, upwelling flow is generated by relative rotation of the top lid, which 
simulates a wind stress. A no-slip condition for the velocity is applied to the top, 
bottom, inner, and outer walls. A no-flux condition is used for the density at the solid 
walls. At the two azimuthal boundaries, periodic boundary conditions are applied. 

The physical parameters of the present cases are summarized in table 2. The Rossby 
number e is based on the maximum lid velocity U p  and the radial span of the annulus 
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Case t‘ = U,/fL,  E = v / fHz  F; = f hilg‘h,, a l L ,  t, (s) 

FB2D1 0.08 1.5 x 10-5 2.9 0.10 202.4 
FB2D2 0.07 8.3 x 39.7 0.06 124.9 
FB3D 0.07 1 .o x 10-4 39.7 0.06 39.5 
SB3Dl 0.07 1.9 x 39.7 0.06 39.5 
SB3D2 0.04 1.2 x 10-4 162.2 0.03 45.2 
SB3D3 0.04 1.2 x 10-4 162.2 0.03 45.2 

T ~ B L E  2. The physical parameters of upwelling flows in a section of an annulus. 

L,. The quantityf= 2 9  is the Coriolis parameter. The value of E ,  which measures the 
strength of advection relative to rotation, is less than 0.1 in all cases. The Ekman number 
E, which is based on the kinematic viscosity v, the Coriolis parameter and the 
maximum depth of the container H, is of the order of for the axisymmetric cases 
and of for the 3D cases, respectively. The internal Froude number of the upper 
layer F,, which measures the strength of rotation relative to stratification, is much 
larger than U(1) in all cases except Case FB2Dl. In the definition of 4 in table 2, A, 
is the theoretical stationary width of the density front (to be defined in $ 5 ) ,  
g’ = g(p,-p,)/p, is the reduced gravity. The values of the Rossby radius of 
deformation for the two-layer system, B, are much smaller than L,, which means that 
the effect of the inner wall of the annulus on the rotation-dominated flow structures 
near the outer wall is small. The spin-up time scale is defined by Linden & van Heijst 
(1 984) as t, = (hlo/A52) ((52 + A ~ ) / v ) ” ~ .  The fluid is salt stratified with a Prandtl 
number of 723. 

In the two axisymmetric cases, all the physical parameters of Cases FB2D1 and 
FB2D2 match, respectively, those of Cases (e) and (b) of Narimousa, Maxworthy & 
Spedding (1991). In the 3D cases, except for fluid viscosity, Cases FB3D and SB3D1 
have the same physical parameters as Case (b) of Narimousa er al., while Cases SB3D2 
and SB3D3 match their Case (a). The fluid viscosity in the 3D cases is 12.5 times larger 
than that in the experiments, a necessary approximation which will be justified in $4. 
The parameters of Cases SB3D2 and SB3D3 are identical except a finer 80 x 80 x 80 
grid is used for SB3D3 in order to examine the effect of grid resolution. 

NM87 defined a parameter 8* = g’hlo/u*jA,, where u* is the disk friction velocity. 
By using 8*, which combines the effects of stratification, rotation, and surface stress, 
Narimousa & Maxworthy successfully correlated their data which span a wide range 
of parameters. However, through u*, B* is a function of the fluid viscosity. Since the 
viscosity used in the present 3D computations is larger than that in their experiments, 
and scaling relations based on 8” may not be independent of viscosity, it is difficult to 
compare the present data with the measured data based on 8*. In fact, the present 
results do not seem to agree with the experimental data when they are scaled with 8*. 
Therefore, quantitative comparisons with the experiments will be based on inviscid 
parameters which are given in $5.  
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The primary length scale in the vertical direction of NM87 is the thickness of the 
Ekman layer. We denote the thickness of a laminar Ekman layer as Sb and the 
thickness of a turbulent Ekman layer as St,. The scaling relations for Sk (Greenspan 
1968) and 8, (Caldwell, Van Atta & Helland 1972) are 

where f = 252 is the Coriolis parameter and Q is the angular velocity of the system 
rotation. The quantity u* which is called the disk friction velocity is defined as 

u* = (7u,/p)1’2> (13) 

where 7, is the shear stress at the disk. 
Although the Ekman layer may become turbulent at small Ekman numbers, it is 

laminar during the initial spin-up process. In the present upwelling flows, the top 
Ekman layer is laminar until baroclinic instability occurs near the surface, at which 
time the Ekman layer breaks down. As a result, we take the laminar Ekman layer 
thickness as the vertical length scale. In the present analysis, the laminar Ekman 
thickness is also used to determine the cross-shore length scale near the radial 
boundary. 

Since the instability of the surface density front is of interest, the length scale of the 
frontal waves determines the spatial resolution in the circumferential direction. From 
past experimental data, the size of the saturated frontal waves or eddies scales with the 
geometric mean of the Rossby deformation radii of the two layers as 

LJ2xR = c,, 
where the value of C, is close to I . I  (Griffiths & Linden 1982; Chia, Griffiths & Linden 
1982; Phillips 1954; Killworth, Paldor & Stern 1984; NM87). 

The time scale of the upwelling flow, which is the time period between the start of 
the ‘wind’ and the time when the upwelled surface front reaches the stationary state 
was estimated by NM87 as 

where g’ = g(p, - p l ) / p l  is the reduced gravity, and h, is the initial depth of the upper 
layer. 

Based on the above length and time scales, spatial and temporal resolutions may be 
determined and the feasibility of an LES may be assessed. In the following, a brief 
discussion is given on the feasibility of the simulation and the necessary approxi- 
mations. A detailed analysis can be found in Zang (1993). 

We pick one particular experiment, Case (a)  of Narimousa et al. (1991) which we 
refer to as Case SCALE, to perform our scaling analysis. If a geometrically stretched grid 
is employed in both the radial and the vertical directions with five grid points within 
the top and bottom Ekman layer and the sidewall boundary layer, and a uniform grid 
is used in the circumferential direction with six grid points within one frontal wave, the 
grid will contain about 3.1 million grid points based on the length scales in (1 1 )  and 
(14). In the present upwelling flow simulations, we need to store about 60 variables per 
grid point (Zang et al. 1994; Zang 1993). The computer memory requirement amounts 
to about 190 million words. Comparing with the 64 million word central memory of 
the Cray YMP on which the upwelling runs were executed, we observe that the storage 
of the above grid in the main memory is not possible. 
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The number of time steps required to reach the stationary state is approximately 
40 000 based on the time scale in (1 5). The estimated CPU time per grid point per time 
step using one processor of a Cray Y-MP is about 45 ps for the present run (Zang et 
al. 1994; Zang 1993). Putting these numbers together we obtain the required total CPU 
time for one run to be about 1900 hours which is too expensive. 

As stated in 93, two approximations were made in order to yield a feasible problem 
for numerical simulation. One is to increase the fluid viscosity, i.e. increase the Ekman 
number or reduce the Reynolds number. In the present simulation, we employ a fluid 
viscosity that is 12.5 times larger than that of water, i.e. v = 1.25 x m2 s-l. If the 
fluid viscosity is too large, the flow becomes completely laminar and the frontal waves 
are dissipated. The other approximation is to simulate upwelling in a section of an 
annulus instead of a cylinder to reduce the azimuthal extent of the domain. Since the 
phenomena of interest such as upwelling and frontal stability are located near the outer 
boundary and are far away from the centre of the cylinder, the addition of a small inner 
wall in the annulus does not have a significant effect. This is confirmed by the results 
in $5.  

After the above two approximations, a grid of 66 points in each direction is sufficient 
and the estimated computer memory is 17 million words and the total CPU time on one 
processor of the Cray Y-MP is about 15 hours. While it is still very expensive, the 
present simulation only requires less than 1 YO of the CPU time that would be 
consumed by a simulation of the actual NM87 experiment. As is shown in the 
following section, the prcsent simulations have reproduced most of the interesting 
features observed in NM87. 

5. Simulation results 
5.1. Qualitative description 

A qualitative picture of the evolution and structure of the upwelling flow is described 
for Case SB3D2. The situation in other cases is similar. A large amount of information 
is extracted by examining the flow field through the use of computer animation. In the 
following, terminology from physical oceanography is occasionally used for con- 
venience. The direction toward the axis of the annulus is called the ‘seaward’ direction, 
while that toward the outer wall is called the ‘shoreward’ direction. ‘Longshore’ refers 
to the azimuthal direction, and ‘cross-shore ’ represents the radial direction. A 
radial-vertical plane is called a ‘ cross-shore ’ plane, while an azimuthal-vertical plane 
is called a ‘longshore’ plane. A cyclone (anticyclone) is a flow structure whose relative 
vorticity has the same (opposite) sign as the Earth or the system rotation. 

As the lid rotates clockwise relative to the anticlockwise system rotation ( A 8  < 0), 
fluid near the top which moves with the lid is driven radially inward by the Coriolis 
force and forms the top Ekman layer, which is established within one rotation period. 
Constrained by mass conservation, fluid returns to the outer wall below the Ekman 
layer, which occurs at first in the interior of the flow. This forms a secondary cross- 
shore circulation in the radial-vertical plane. Initially, this circulation consists of one 
cell which rotates counter-clockwisely when viewed in the positive azimuthal direction. 
Because there is no azimuthal pressure gradient, as the flow adjusts to the geostrophic 
balance, radial transport in the interior weakens. At the same time, the bottom Ekman 
layer and the sidewall boundary layers develop and establish a cross-shore secondary 
circulation. These adjustments occur in a time scale of 5 to 10 rotation periods. 

The upward vertical transport near the outer wall lifts up the density interface there. 
The peak of the interface corresponds to the location where the vertical velocity is 



56 Y. Zang and R. L. Street 

_/--- 

FIGURE 3. Density field p / p 2 :  (a)  t / t ,  = 0.25, the main body of the interface has yet to touch the top 
surface; (b)  t / t ,  = 0.5, axisymmetric front; (c) t / t ,  = 0.9, small-amplitude waves appear at the front; 
(d )  t / t ,  = 1.5, frontal waves grow to large amplitude; (e) t / t ,  = 2.0, frontal waves saturate and eddies 
break away from the front (point ‘A’). (Case SB3D2.) 

maximum in the sidewall boundary layer. When this peak reaches the top Ekman layer, 
it is carried radially inward by the Ekman transport. Figure 3 (a) shows the density field 
when the non-dimensional time t / t ,  is at 0.25. We can see that a thin layer of interface 
fluid which is slightly heavier than the upper-layer fluid (which one might call the ‘top 
inversion layer’) develops near the top, before the main body of the interface touches 
the surface. 

If the relative rotation of the top lid is strong enough, the body of the interface will 
intersect the surface and form an axisymmetric surface front (referred to as the 
‘primary front’). At t / t ,  = 0.5 (figure 3b) ,  the main body of the interface has just 
reached the top surface. The ‘nose’ of the top inversion layer has moved further 
offshore. At the immediate sea side of the interface, there is a ‘ blob’ of interface fluid 
which is dropping down as it is shown in the radial-vertical cross plane. Actually the 
‘blob’ is an axisymmetric column of sinking fluid due to the unstable stratification (see 
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$5.3 and figure 5 for more discussion). The axisymmetric primary front of this moment 
is still in its forming stage which is relatively wide. 

At t / t s  = 0.9 (figure 3c),  small-amplitude azimuthal waves have appeared at the 
primary front while the front is almost axisymmetric. Seaward of the primary front, 
there is another axisymmetric but weaker front (the ‘secondary front’) which forms the 
nose of the top inversion layer. The top inversion layer moves farther offshore than the 
primary front and becomes thicker in the process owing to diffusion. On the shoreside 
of the primary front, there is an intensive mixing zone below the top Ekman layer, 
which one might call the ‘trailing mixing zone ’. This zone is created by the circulation 
between the outer wall and the front. As the lower-layer fluid is lifted up in the 
boundary layer on the outer wall, it is transported radially inward in the top Ekman 
layer. When reaching the density front, the lower-layer fluid begins to sink back down 
because of unstable stratification. This sinking motion drags a portion of the interface 
fluid with it and creates intensive mixing. At this time, the cross-shore circulation 
consists of two main cells separated by the density interface. The two cells rotate 
counterclockwisely when viewed in the direction opposite to the lid velocity (the 
‘ poleward direction’). The two-cell structure and the ‘sinking’ behaviour of the 
upwelled fluid near the front are consistent with the observations of Mooers et al. 
( 1 9 76). 

As the front migrates offshore, it becomes unstable to small perturbations and 
azimuthal frontal waves appear and grow (cf. the observations of Petrie et al. 1987 with 
respect to the baroclinic waves in the western-boundary upwelling off Nova Scotia). As 
shown in figure 3 (d), which is at t / t ,  = 1.3, the initially axisymmetric front has evolved 
into an irregular pattern with large-scale frontal waves and eddies. The surface front 
is much wider at the location of the frontal eddies owing to the strong eddy transport 
and mixing. The top inversion layer becomes unstable and begins to sink to the lower 
layer. The previously axisymmetric secondary front splits into azimuthal bands which 
emanate from the secondary front. A total of eight bands is observed which gives a 
circumferential wavenumber of 32. 

The frontal waves grow to large amplitude and eventually become saturated. The 
structure of the saturated waves which is shown in figure 3(e) at t / t ,  = 2.0 consists of 
cyclone/anticyclone pairs which form jet-like structures at their boundaries. At the 
crest of the second wave (point A in figure 3 e),  we see that a cyclonic vortex is breaking 
off from the main front and becoming a ‘pinched-off’ cyclone. The structures of 
cyclone/anticyclone pairs, jets and pinched-off cyclones were also observed in the flow 
visualization in NM87. 

The thickness of the front is larger owing to mixing on both sides. In the cross-shore 
plane, the trailing mixing zone extends from the shoreside of the front all the way to 
the outer wall boundary layer. Because of the propagation of azimuthal waves, the 
cross-shore flow structure becomes very unsteady (compare figures 3 d and 3 e). The 
cross-shore transport in a vertical cross-section changes rapidly as azimuthal waves 
pass through. At this time, the azimuthal bands at the unstable top inversion layer have 
broken into isolated patches of interface fluid which eventually descend back down to 
the lower layer. The structure of instabilities of the primary and the secondary fronts 
will be discussed in more detail in $5.3. 

5.2. Quantitative comparisons with past results 
5.2.1. Front-surfacing time t f  

When the surface stress is strong enough, the density interface intersects the top lid 
and forms a surface front. The time scale for the front to appear at the top surface is 
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FIGURE 4. Time history of the height of the interface. Symbols are: -0-, Case FB2Dl ; 
-0-, Case FB2D2; straight line connects (0,l) and ( l ,O) ,  plotted for reference. 

Yoshida (1 955) Present Present 
Case tf/ t ,  t f / t ,  u* (cm s-l) 

FB2D 1 0.29 0.58 0.60 
FB2D2 0.31 0.26 0.64 
FB3D 0.30 0.29 I .o 
SB3D1 0.37 0.43 1.0 
SB3D2 0.27 0.33 1.1 
SB3D3 0.27 0.26 1 . I  

TABLE 3. The surfacing time of the front tJt8 and the computed disk friction velocity u*. 
Refer to tables 1 and 2 for details of the runs. 

denoted by tr The computed values of t f / t ,  are compared with Yoshida's (1955) 
analytical criterion (equation (1)) and the results are shown in table 3. Also shown in 
table 3 is the computed value of the disk friction velocity u,. 

Agreement between the computed and the analytically predicted front-surfacing 
time is reasonably good except for Case FB2Dl. The fine-grid result of Case SB2D3 
agrees better with Yoshida's prediction than Case SB2D2. In Case FB2Dl the Froude 
number 4 is of order one while values of 4 in the other cases are much larger (table 
2). This indicates that, in Case FB2D1, the time scale of buoyancy is comparable to 
that of rotation. Therefore it is possible that the buoyancy effect may have become 
important in this case before the interface touches the top lid. Moreover, the nonlinear 
terms may also be of significance in this time scale. These may invalidate the balance 
assumed in Yoshida's model. To verify this, we plot the time history of the upper-layer 
depth at the outer wall in figure 4 for Cases FB2D1 and FB2D2. Based on Yoshida's 
theory, h,/h,, should decrease linearly us. time. In figure 4, the dotted straight line is 



Upwelling simulation and frontal instability 59 

V L R  V L ,  4 1 9 8  

Case Theory (equation (16)) Present Present 

FB2D 1 0.17 0.14 1.5 
FB2D2 0.37 0.34 7.0 
FB3D 0.37 0.44 9.0 
SB3Dl 0.37 0.40 8.1 

TABLE 4. The width of the stationary front. 

plotted for reference. We see that while the curve of Case FB2D2 is almost straight, the 
curve of Case FB2D1 deviates from linear trend when f is larger than about 0.3tf. This 
deviation from a linear trend shows that (1) is valid at large Froude numbers but may 
not be valid when the Froude number is of order one. 

5.2.2. Stationary-front width A, 
As the front is driven by the Coriolis force and migrates offshore, its curvature 

increases. As a result, a pressure gradient begins to build up across the front. At some 
stage, this radial pressure gradient balances the Coriolis force and the front stops 
migrating and becomes stationary. The stationary-front width A, measured from the 
outer wall is compared with an analytical result which is based on the geostrophic 
balance between the Coriolis force and the cross-front pressure gradient. Derivations 
of the expression for A,$ for a cylinder may be found in Narimousa & Maxworthy (1985) 
and, in a somewhat different form, in Linden & van Heijst (1984). The formula for A, 
in an annulus is derived in the Appendix: 

{ [4g‘ho(R: - R~)]”z]”2 

fAQ 
A, = R,- R,+ 

Table 4 shows the values of A,/L, and A,/9?s, where 9, denotes the two-layer Rossby 
radius of deformation defined in (2) and computed at the stationary-front location. 
Results from Cases SB3D2 and SB3D3 are not available since these were not run long 
enough to reach a stationary state. In the 3D simulations, the A, value is the averaged 
width of the stationary front. 

We see that the computed values of A, agree very well with the theoretical result 
based on geostrophic balance. This agreement is consistent with the experimental 
results of NM87. 

Table 4 shows that the values of A,/&?, are generally larger than one. The present 
results as well as those from NM87 show that A, is larger at smaller g7 which indicates 
that the front width is not only a function of rotation and stratification, but is also 
strongly dependent on the magnitude of the surface stress. 

5.2.3. Wavelength of the saturated waves 
As the surface front migrates offshore, it is unstable to azimuthal perturbations. 

Waves develop at the front and grow to large amplitude. At some stage, the waves stop 
growing and become saturated. The stability of a density front has been investigated 
experimentally by Hide (1971), Hart (1980), Griffiths & Linden (1981, 1982), Linden 
& van Heijst (1984), Sanders (1973), Chia et al. (1982), and NM87, among others. 
Theoretical stability analyses have been carried out by Eddy (1949), Phillips (1954), 
Griffiths & Linden (1981), and Killworth et al. (1984). For fronts sufficiently far from 
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Case Experiment (NM87) Present 

1.19 
1.04 

FB3D N/A 
SB3Dl 1.22 
SB3D2 0.98 1.00 

TABLE 5. The dimensionless wavelength of the saturated waves. 

Theory Computation 
Case (Phillips 1954) (Present) 

FB3D 0.30 0.41 
SB3D1 0.40 0.39 
SB3D2 0.42 0.46 
SB3D3 0.42 0.44 

TABLE 6. The dimensionless wave speed u,/ U,, where U,  is the local lid velocity. 

a wall, it was found that the wavelength of the most unstable mode L, scales linearly 
with the geometric mean of the deformation radii of the two layers, R = (R,R,)';2, 
where Ri = (g'hJ'/'/'i = 1,2). 

Table 5 shows the dimensionless saturated wavelength L,/2nR from the present 
computation and the experiment of NM87. The values of NM87 in table 5 were 
calculated from their published data. The data from Case SB3D3 are not available 
because it was not run long enough to reach the stage of saturated waves. Reasonable 
agreement has been achieved between the computation and the experiments. The 
discrepancies are within the experimental uncertainty in NM87 which is about 10 to 
20 %. The values of LJ27cR are also consistent with previous findings. For example, 
the experiment of Griffiths & Linden (1982) gives L,/2nR = 1.1 k0.3, Chia et al. 
(1982) gives 1.16f0.27, Phillips' (1954) gives 1.08, and the model of Killworth et al. 
(1984) gives 1.15. 

5.2.4. Dr$ speed of the frontal waves 

predicts that the wave speed of the baroclinic waves u, is 

(17) 
where U, and U ,  are the mean longshore velocity of the upper and lower layers, 
respectively, 4 and 5 are the layer Froude numbers defined as 4 = fZAf/g'h,(i = 1,2), 
ht is the averaged layer depth, and K = (k2 + 1;) l l2  is the total wavenumber, where lj = 

In table 6, the computed U J U ,  and the theoretical value from the above equation 
are shown, where U, is the disk velocity at the front. Phillips' model predicts that the 
most unstable mode has a cross-shore wavenumber li = 7c/2 ( j  = 1). Thus, in 
calculating the value of K in (17), lj is n/2, k is taken as the computed azimuthal 
wavenumber of the frontal waves, and U, and U, are the computed mean velocities of 
the upper and lower layers, respectively. We can see that good agreement is obtained 
between the computation and Phillips' prediction for the three cases with a sloping 
bottom. Notably, the value of u, from the coarse-grid calculation Case SB3D2 is 
within 5 %  of that from Case SB3D3 under the same flow conditions but with a fine 

The frontal waves drift in the direction of the applied stress. Phillips' (1954) model 

u, = [ U,(K2 + 24) + U,(K2 + 24)]/2(KZ + r;, + 4), 

(j++) n ( j  = 0, 1,2, . . .). 
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FIGURE 5. Blown-up view of the sinking of the interface fluid and the formation 
of the surface front. 

grid. The computed wave speed for the flat-bottom case (FB3D) is larger than the 
inviscid theoretical prediction by 30 YO, The discrepancy may be due to the fact that 
Phillips' theory is quasi-geostrophic with no front while the present calculation 
simulates frontal dynamics with a large viscosity. 

Compared to the measurements of NM87 which give 

u, = 0.5U1 = 0.37U,, 

the present computation gives a larger u , .  The value of U J U ,  is 0.74 in NM87, while 
in the computations, it ranges from 0.42 to 0.46, which means that the wave speed is 
almost equal to the mean speed of the upper layer. Notice that from (17), if 4 M 4, 
then u, x (U,  + U,)/2. Therefore, (18) indicates that U2 -+ Ul in the experiments of 
NM87. In the present cases, however, U,/U,  is only slightly smaller than unity (see 
figure 7 in the next subsection), which results in u, M 17,. We conjecture that because 
the interface was thinner and the viscosity smaller in the experiments, a larger shear 
between the two layers was supported, which resulted in a smaller U, in NM87. 

5.3. Structure of the upwelling and frontal wat'es 
Having compared the simulation to past experimental and theoretical results and 
validated our simulation, we may study the structure of the upwelling flow and the 
frontal instabilities in more detail. Examination of the detailed three-dimensional flow 
and density fields from the numerical simulations allows us to show explicitly the 
evolution of the upwelling and the three-dimensional structure of the frontal vortices 
which previously could only be inferred from field observations and laboratory 
experiments. We will focus primarily on the discussion of Case SB3D2 since it 
possesses the most prominent features of the frontal waves. Good agreement between 
results from Case SB3D2 and Case SB3D3 where a finer grid was used verified that the 
grid resolution in Case SB3D2 was sufficient to resolve the flow structures of interest. 
Unless otherwise noted, the following description is about Case SB3D2. 

5.3.1. Cross-shore structure 

As the interface is lifted up near the outer wall by the upwelling, its peak, which 
corresponds to the location of the maximum vertical velocity in the sidewall boundary 
layer, first reaches the top surface and enters the top Ekman layer. The interface fluid 
in the peak is transported seaward by the Ekman flux. As it crosses the interface and 
enters into the upper layer, this column of interface fluid experiences unstable 
stratification and begins to sink down (figure 5 ) .  The dropping fluid connects with the 
main interface as they meet. A circulation is thus formed in which the lower-layer fluid 
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FIGURE 6. Contours in a cross-shore plane at t / t ,  = 0.9. Dotted lines are negative contours. (a) 
Azimuthal velocity (us-uj)/Up, where uj is the azimuthal speed of the front. Contours from -0.1 to 
0.4. (b) Azimuthal vorticity wn/(Up/Ro).  Contours from -30.0 to 90.0. (Case SB3D2.) 

is lifted up in sidewall boundary layer, carried seaward by the Ekman transport, and 
dropped down as it is crossing the interface. The surface front is therefore located 
where the lifted lower-layer fluid drops. This circulation at the shoreside of the front 
creates what we call the ‘trailing mixing zone’. 

After the interface touches the top lid, the cross-shore circulation is split into two 
main cells, with one in each layer. These two cells rotate counter-clockwise when 
viewed from downstream and are separated by the density interface. Figure 6(a) shows 
the azimuthal velocity field in a cross-shore plane at t / t ,  = 0.9; the velocity of the front 
movement has been subtracted out. Solid lines represent positive contours values and 
dotted lines represent negative values. Relative to the front, the upper layer moves 
downstream while the lower layer goes upstream. Relative to the container, all the fluid 
moves in the direction of the wind stress and no reverse underflow is observed. Figure 
6(b) shows the azimuthal vorticity in the same plane. At this time, most of the cross- 
shore motion occurs in the shore side of the front in the trailing mixing zone. These 
results are consistent with the observations of Mooers et al. (1976). 

Figure 7 shows the profiles of the azimuthal velocity uB, radial velocity u,, and 
density p along two vertical lines on the seaward side of the front. The first line (a) is 
very close to the front where the interface is curved up, while the second line (b) is 
seaward of the first line where the interface is essentially flat. We see that in (a), because 
of the horizontal density gradient, there is a shear in the azimuthal velocity across the 
interface. Shear also exists in the radial velocity profile across the interface, although 
it is very weak. On the other hand, in (b), where there is no horizontal density gradient, 
the velocity profiles are uniform. This is consistent with the thermal wind relation. The 
density profile shows a top inversion layer and a fairly sharp interface. The longshore 
velocity is in the direction of the applied stress. The radial velocity is very weak except 
in the top and bottom boundary layers. Examination of the top and bottom boundary 
layers shows that the Ekman layers are essentially laminar, 

Figure 8 (a) shows the velocity vector field in a vertical cross-section at t / t ,  = 1.3, at 
which time frontal waves have already developed and the top inversion layer has begun 
to drop. The drop of the top inversion layer induces several azimuthal vortices. 
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FIGURE 7. Profiles along vertical lines seaward of the front, B I B ,  = 0, and tit, = 0.9. Lines are: -, 
.,/Up; - . -, .,/Up; ---, PIP2,  where U p  is the maximum speed of the lid. (a) r /Ro = 0.87, (b) r /Ro = 
0.75. (Case SB3D2.) 

Shoreside of the front, heavy fluid downwells from the top Ekman layer and creates an 
intensive mixing zone. We see that as frontal waves propagate through, the on- and 
offshore transport is no longer confined in the top and bottom boundary layers. Large 
radial velocity also occurs in the bulk region. In this cross-section, the upper-layer fluid 
below the top Ekman layer moves shoreward while the lower-layer fluid moves 
seaward. Figure 8 (b) shows the velocity vector field in the same vertical cross-section 
at t / t ,  = 2.0. We see that the cross-shore transport at this time is completely different 
from the previous picture. On the sea side of the front, seaward-moving upper-layer 
fluid is compensated by the shoreward-moving lower fluid. However, on the shore side 
of the front, the whole bulk fluid moves shoreward. This result shows that as pairs of 
cyclonic and anticyclonic frontal waves pass through, the cross-shore transport in a 
vertical plane is very unsteady and changes dramatically. 
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FIGURE 8. The velocity field in a cross-shore plane: ( (1 )  / / t ,  = 1.3; (h)  t / t ,  = 2.0. (Case SB3D2.) 

FIGURE 9. Velocity vector field in a horizontal plane just below the top Ekinan layer, at z / H  = 0.95. 
The reference frame is travelling with the frontal waves. ( ~ 7 )  t / t ,  = 1 .O;  ( h )  t / t ,  = 1.3: (c) t / t ,  = 1.8; 
( d )  f/t, = 2.0. (Case SB3D2.) 
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FIGURE 10. Frontal eddies in a laboratory experiment (Case a of Narimousa et a/. 1991). 
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FIGURE 11. Eddies and jet-like structure at the coastal upwelling front 
(Mooers & Robinson 1984). 

5.3.2. Horizontal structure 
We now examine the flow structures in the horizontal plane. Figure 9(a-d) shows the 

evolution of the velocity field from t / t ,  = 1.0 to 2.0 in the plane z / H =  0.95. The 
velocities are plotted in the reference frame travelling with the frontal waves in order 
to reveal their structures. We see that the waves first appear only at the front location 
(figure 9a) but extend to the container wall as they grow to large amplitude. After 
t/t,T = 1.8, the waves appear to be saturated. High-speed jets which transport heavy 
fluid offshore are formed at the upstream edge of the cyclonic regions. The structure 
closely resembles that observed through flow visualizations in NM87 (figure 10). It is 
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also similar to the structure observed by Mooers & Robinson (1984) in the California 
Current system (see figure 11). 

Let the x-axis point toward the coast and the y-axis point along the coast against the 
wind direction. The vertical component of the relative vorticity gr is defined as 

a v  au g =--- 
ax aye 

Contours of gr at t / t ,  = 2.0 and z / H  = 0.95 are plotted in figure 12(a), and the vertical 
velocity w in the same plane is shown in figure 12(b). The frontal waves appear in the 
form of cyclone/anticyclone pairs. In the following, we call a wave crest the farthest 
offshore location of a wave and a wave trough the nearest offshore location. We see 
that at the primary front, wave crests correspond to cyclonic regions while wave 
troughs correspond to anticyclonic regions. In addition, since the crests enclose lower- 
layer fluid, they also correspond to downwelling. In contrast to this, wave troughs 
correspond to regions where upper-layer fluid upwells on the seaward side of the front. 

Figure 13(a) shows profiles of ug, low,  and p at t / t ,  = 0.9 along a radial line below 
the top Ekman layer. Figure 13(b) is a similar plot at t / t ,  = 2.0. Notice that the vertical 
velocity is increased by a factor of 10 for plotting purposes. We see that the magnitude 
of the longshore velocity ug has two maxima. One corresponds to the edge of the 
sidewall boundary layer, and the other, which is the true maximum, always occurs at 
the location of the surface front. Fluid rises in the outer-wall boundary layer and 
descends in the inner-wall boundary layer. There is strong downwelling on the 
shoreward side of the front and upwelling on the seaward side. The fluctuations which 
appear close to the inner wall at t / t ,  = 2.0 correspond to the instability of the 
secondary front and the drop of the top inversion layer. We see that there is an anti- 
correlation between the density and the vertical velocity which signals the dropping of 
the heavy fluid and rising of the light fluid. 

The structure of the longshore (azimuthal) velocity is of special interest. It has been 
observed by many researchers that the longshore velocity in the upper layer has a 
coastal jet structure. O'Brien & Hurlburt (1972) provided an explanation of the 
existence of the jet based on the conservation of potential vorticity. Consider a two- 
layer fluid system and assume that the coast is a straight line. Neglecting the longshore 
gradient of the cross-shore velocity, we can write the potential vorticity equations for 
the two layers as 

d c?v /ax+ 
dr( ' h ,  3 = 0 7  (19) 

The above equations can be integrated in time. Assuming that the fluid is at rest 
initially, we have 

When upwelling occurs, h, < h,, and h, > h2,,. Thus, in the geostrophic region, 
au,/ax < 0 and c?v,/ax > 0. However, 0, = 0 at the coast and since u, < 0 in the 
upwelling region, au,/dx > 0 in the coastal boundary layer. Therefore, 0, must have a 
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FIGURE 12. Contours in a horizontal plane just below the top Ekman layer, at  z / H  = 0.95 and 
t / t ,  = 2.0. Solid lines represent positive values, and dotted lines represent negative values. (a) Vertical 
relative vorticity &/(Up/Ro) .  Contour values are from -7.5 to 39. (b) Vertical velocity w/Up.  
Contour range from -0.06 to 0.08. (Case SB3D2.) 
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FIGURE 13. Profiles along a horizontal line below the Ekman layer, O/O, = 0.5, and z / H  = 0.95. 
Lines are: -, IOw/U,; -. -, u8/U8; ---, P I P z ,  where U, is the local lid velocity. (a) t / t ,  = 0.9, 
(b) tit, = 2.0. (Case SB3D2.) 



68 Y. Zang and R. L. Street 

FIGURE 14. Frontal wave structure in a container without the sloping bottom. Contours in a 
horizontal plane near the top surface, at z / H  = 0.92 and t / t ,  = 2.0. (a) Density PIP2 .  Contours are 
from 0 to 1. (b) Vertical vorticity tJ(UJRo). Contours are from - 12.5 to 45. (Case FB3D.) 

minimum (or its magnitude must have a maximum) near the edge of the upwelling 
boundary layer which leads to a jet-like structure. 

The result in figure 13 is consistent with the argument of O’Brien & Hurlburt in that 
it shows that the longshore velocity does have a maximum at the edge of the coastal 
boundary layer. However, the above argument cannot explain why there is another 
maximum at the surface front. We think that a simple explanation is as follows. The 
effect of the Coriolis force on an offshore radial velocity is to reduce its longshore 
velocity in the wind direction. Thus a maximum of the amplitude of the longshore 
velocity appears at the location where the offshore radial velocity has a minimum. 
Because the cross-front motion is inhibited, the offshore radial velocity is smallest at 
the front. It is therefore clear that the longshore velocity should have a maximum at 
the front location. 

In cases where the sloping bottom is replaced with a flat bottom, the frontal waves 
are not nearly as intensive. Figures 14(a) and 14(b) show, respectively, the density and 
vertical vorticity field in a horizontal plane below the Ekman layer for Case FB3D at 
t/t,7 = 2.0. The appearance of frontal waves is evident in both the density and vorticity 
fields. However, the amplitude of the waves is much smaller and the wavelength is 
larger than that in Case SB3D2 (figure 12). This difference may be explained as follows. 
First, from table 5 ,  we see that the wavelength L, scales linearly with the geometric 
mean of the Rossby radii of deformation of the two layers R. If the frontal waves 
appear on a sloping bottom, the depth of the lower layer is smaller than that of a flat 
bottom. This small depth ratio results in a smaller R and, thus, a smaller L, on a 
sloping bottom. In addition, a mechanism to generate vorticity waves exists over a 
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FIGURE 15. (a) Streamline pattern and (b) density in a longshore plane at r /R0  = 0.93 which cuts 
through the primary front. The reference frame is travelling with the frontal waves. (Case 
SB3D2.) 
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FIGURE 16. Density in a horizontal surface below the top Ekman layer, at z / H  = 0.95 and 
t / t ,  = 1.3. Contours are from 0 to 1. (Case SB3D2.) 

sloping bottom. This mechanism has been shown by Longuet-Higgins (1965) (see Gill 
1982) to explain the continental shelf waves. The mechanism is, again, based on the 
conservation of potential vorticity, 

Fluid parcels displaced into deeper water or offshore to larger HL acquire cyclonic 
vorticity (positive i&) and fluid parcels displaced into shallower water or onshore to 
smaller HL acquire anticyclonic vorticity (negative c,.). When small-amplitude azimuthal 
waves develop at the front, wave crests which have cyclonic vorticity move to deeper 
water, while wave troughs with anticyclonic vorticity move to shallower water. By the 
above mechanism, wave crests will acquire more cyclonic vorticity and troughs obtain 
stronger anticyclonic vorticity. In this way, the waves are amplified. 

5.3.3. Longshore structure 
To reveal the vertical structure of the frontal waves, we plot the streamlines in a 

longshore plane which cuts through the frontal waves (figure 15a). We see that the 
waves appear in the form of vertical columns. They extend from the bottom of the top 
Ekman layer to the top of the bottom boundary layer. The local Rossby number of the 
frontal waves u,/’, is estimated to be about 0.1, which is consistent with the fact that 
the structure of the waves appears to be predominantly two-dimensional. Figure 15 (b) 
shows the density field in the same longshore plane. Being consistent with the velocity 
field, the fluid appears to be well mixed vertically but displays a structure of two- 
dimensional columns. 

5.3.4. Collapse of the top inversion layer 
In figure 3(c) in which t / t ,  = 0.9, we see an axisymmetric secondary front which 

leads the top inversion layer. Later, at t/t, = 1.3 (figure 3 4 ,  the top inversion layer 
becomes unstable and splits into azimuthal bands, and still later, at t / t ,  = 2.0 (figure 
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FIGURE 17. (a) Velocity vector field and (6) density field in a longshore plane at r /R ,  = 0.46 and 
t / t ,  = 1.3, which cuts through the secondary front. The velocity reference frame is travelling with 
the waves. (Case SB3D2.) 

3e), the bands are broken into isolated patches and drop back to the lower layer. The 
dynamics and structure of this instability are of particular interest. 

When the top inversion layer begins to collapse, the azimuthal waves first appear at 
the secondary front. The waves then propagate toward the outer wall in the form of 
bands or fingers as interface fluid continues to drop. Figure 16 is the top view of the 
density field in figure 3(d )  at t / t ,  = 1.3. The direction of the bands is at an angle of 
about 60" to the geostrophic (azimuthal) direction. A total of eight waves are observed 
in this case which gives an azimuthal wavenumber of 32. Figure 17(a) shows the 
velocity field in a longshore plane cutting through the secondary front. We see that as 
bands of interface fluid drop, they form columnar vortices in the radial direction. These 
vortices extend from the edge of the top Ekman layer to the density interface. The 
density field shown in figure 17(b) also displays the columnar structure of the 
instability. 

The bands of interface fluid are further unstable to radial disturbances and break up 
into isolated patches (Figure 3 e) which eventually drop back down to the lower layer. 
Therefore the top inversion layer and the secondary front are not persistent features of 
the upwelling. They disappear within a couple of spin-up time scales r s .  

It is unclear what the precise dynamics of these instabilities is, and it may involve 
three-dimensional convective and shear instabilities under the effect of rotation, such 
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as the Rayleigh-BCnard or the Ekman instability. A detailed stability analysis of these 
processes is highly desirable but, owing to its complexity, is beyond the scope of the 
present study. 

6. Concluding remarks 
LES results confirmed the laboratory experiments of NM87 and some previous field 

observations. The full Navier-Stokes simulations were able to explicitly reveal the 
temporal evolution and the spatial structure of the three-dimensional flow field and 
provide further insight into the upwelling dynamics. 

The main results from the simulations of the upwelling on a flat or a sloping bottom 
are as follows. 

(i) The vertical structure of upwelling consists of a persistent primary front, a 
trailing mixing zone on the shoreside of the front, and a temporary secondary front 
which leads a top inversion layer. 

(ii) A coastal jet is observed. The longshore velocity near the top surface has two 
maxima, one at the edge of the outer-wall boundary layer, and the other at the location 
of the front. The frontal jet has a larger longshore velocity. 

(iii) The primary front is unstable to azimuthal perturbations and develops large- 
amplitude baroclinic waves. The wave structure consists of cyclone/anticyclone pairs 
with associated jet-like motion. 

(iv) Wave crests correspond to cyclonic downwelling regions, while wave troughs 
correspond to anticyclonic upwelling zones. 

(v) The frontal waves are much more intensive on a sloping bottom than on a flat 
bottom with the same maximum water depth. 

(vi) The secondary front is unstable to azimuthal perturbations. Its instability, and 
the associated drop of the top inversion layer, takes the form of radial bands which 
subsequently break up into isolated patches and eventually sink. 

(vii) The flow structures are strongly aligned in the vertical direction, indicating the 
dominant effect of rotation. 

(viii) Reasonable agreement was obtained between the simulation data and past 
observations, experiments, and theories on upwelling time and length scales such as the 
surfacing time, the stationary-front width, and the wavelength and wave speed of the 
frontal waves. Several frontal structures observed in the flow visualizations of NM87, 
such as the cyclone/anticyclone pairs, plumes, jets and pinched-off cyclones were 
confirmed. 

Several questions remain unanswered. The precise nature of the instability at the 
secondary front and the collapse of the top inversion layer is unclear. A formal 
instability analysis of this process is needed and should include the effects of rotation, 
stratification, three-dimensional shear, and possibly viscosity. More studies of the 
momentum, velocity and energy balances of the instability process would also be 
useful. 

Simulations of small Ekman number (high Reynolds number) flows in a whole 
cylinder are highly desirable in order to yield a more direct comparison with 
experiments. Primitive equation simulations can be made now of field-scale 
configurations (see, for example, Haidvogel et af. 1991 and Song and Haidvogel 1994). 
The next challenge for the non-hydrostatic LES code presented here is to extend the 
current simulation to more realistic coastline and shelf geometries, viscosities, density 
profiles, and spatial and temporal wind variations. This requires an order of 
magnitude increase in computing power which might be provided by the massively 



Upwelling simulation and frontal instability 73 

parallel supercomputers in the near future. An efficient implementation of the current 
solution method on massively parallel computing systems may be able to bring to 
reality the detailed simulations and predictions of natural geophysical flows. Towards 
this end, the code has been ported to the Thinking Machines CM-5 and the sector of 
an annulus results reported here have been confirmed for the full annulus configuration. 
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of Naval Research through Grant N-00014-91-J-1200, and computing time on the 
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Appendix. The stationary upwelled front width in an annulus 
Although derivations for the stationary width of a surface front in a cylinder have 

been presented by Linden & van Heijst (1984) and Narimousa & Maxworthy (1985), 
the result for a two-layer stratified flow in an annulus was used here in $5.2. At the 
stationary state, the radial pressure gradient due to the distortion of the front balances 
the Coriolis force. Ignoring the effect of turbulent mixing and centrifugal pressure 
gradient, and assuming that the upper layer is spun-up to the plate velocity, we have 

-frA52 = g ’ ” ,  dq 
dr 

where rA52 is the plate velocity, f =  252 is the Coriolis parameter, r is the radial 
coordinate from the rotation axis, g’ is the reduced gravity and r j s  is the depth of the 
front from the surface. Integrating (A l), we obtain 

where c is the integration constant. If R is the distance from the surface front to the 
rotation axis, then, at r = R,ys = 0. Substituting this boundary condition into (A 2), 
we have 

Conservation of volume of the upper layer in an annulus requires that 

2n qs r dr = nh,[Ri - R;], 

where h, is the initial depth of the upper layer and R, and R, are, respectively, the radii 
of the outer and inner walls. Substituting (A 3 )  into (A 4) and solving for R, we obtain 

4g’h,(Ri - Rf)]”2}1’2 

fA52 
R = {R;+[ 

The stationary front width A, is 
A, = R, - R. 
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